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Abstract

In this paper, we extend some recent results by Hag and Hag regarding a generalized Nehari
class. In particular, we give a description of this new class in terms of the hyperbolic metric, and
characterize the unbounded functions in an analogue of a theorem of Gehring and Pommerenke.
We also derive several sharp distortion theorems and estimates on the pre-Schwarzian that are
used to study John disks.

1. INTRODUCTION

Among univalent functions f defined in the unit disk D, the so called Nehari class N , given by
the condition

(1) |Sf(z)| ≤ 2

(1− |z|2)2
,

has been studied in fairly deep detail since Nehari’s original result [N] that related the size of the
Schwarzian derivative Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2 with univalence. In a recent paper [HH], the
issues of continuous extension to D and extremal behavior were analyzed under an assumption
weaker than (1), namely that

(2) sup
r,ζ

(1− r2)2σf (r, ζ) ≤ 2 ,

where 0 ≤ r < 1, |ζ| = 1, and

(3) σf (r, ζ) = Re[ζ2Sf(rζ)]− 1

2
[Im{ζ f

′′

f ′
(rζ)}]2 .

The class NH of functions locally univalent in D and satisfying (2) is invariant only under affine
changes in the range and rotations in the disk. Simple examples show that they may not be uni-
valent in D, not even on subdisks of arbitrarily small, fixed radius. Despite the rather complicated
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expression for σf , this quantity appears in a natural way when applying Sturm comparison tech-
niques to study problems of distortion related to Sf (see, e.g., [COP] and [GP]). As we will see,
condition (2) has the consequence that the function

hf (z) =
1√

(1− |z|2)|f ′(z)|

is convex along every ray from the origin parametrized with the hyperbolic arclength parameter
s = 1

2 log 1+r
1−r (see [COP] for a similar characterization of the class N). In [HH, Proposition 5.3], the

authors consider an extension of a well known result of Gehring and Pommerenke, and show that
functions in NH with f ′′(0) = 0 are either unbounded or else bounded and having a logarithmic
modulus of continuity in D. They leave open the question as to what the unbounded functions can
be. Using the above mentioned property of the function hf , we will show that such an f must be
an affine transformation of a rotation of L(z) = 1

2 log 1+z
1−z . It is an unresolved problem in the same

Proposition to determine whether the functions in the bounded case remain univalent in D.
We will also consider in this paper the subclasses NHt, 0 ≤ t < 1, given by

(4) sup
r,ζ

(1− r2)2σf (r, ζ) ≤ 2t ,

and will derive sharp distortion theorems both for NH and NHt (see, [CO1]). In order to study
John disks we will consider the asymptotic bound

sup
ζ

[lim sup
r→1

(1− r2)2σf (r, ζ)] < 2 ,

together with a simple finiteness condition that, in some sense, replaces the normalization f ′′(0) = 0.

2. CONVEXITY AND DISTORTION

It is well known that a locally injective meromorphic function f can be written as the quotient
U1/U2 of two linearly independent solutions of the linear equation U ′′ + 1

2(Sf)U = 0, and that

U0 = (f ′)−1/2 is always one particular solution. Somewhat tedious but straightforward calculations
show that the restriction u(r) = |U0(rζ)| of |U0| to a ray [0, ζ) satisfies

(5) u′′(r) +
1

2
σf (r, ζ)u(r) = 0 .

In other words, when f ∈ NH one will have information about the behavior of |U | along rays for
one solution of the above complex linear equation, and not necessarily for every such solution. The
next comparison lemma will be crucial to our considerations. It can be found in [CO3], but we
include the proof for convenience.

Lemma 1: Let p = p(r), q = q(r) be real valued functions on [0, 1) with p(r) ≤ q(r). Let u, v be
positive solutions of u′′ + pu = 0 and v′′ + qv = 0, respectively. Then

w(s) =
u

v
(G(s))

is a convex function of s, where G = F−1 and

(6) F (r) =

∫ r

0
v−2(x)dx .
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Proof: Since F ′ = v−2 we see that, at corresponding points, G′ = v2. Therefore w′ = vu′ − uv′
and w′′ = (vu′′ − uv′′)v2 = (q − p)uv3 ≥ 0.

Lemma 2: If f ∈ NH then hf is convex along every ray [0, ζ) as a function of the hyperbolic
arclength parameter.

Proof: Let f ∈ NH. In virtue of (5) it follows for each ζ, the function u(r) = |f ′(rζ)|−1/2 satisfies
an equation of the form u′′(r) + p(r)u(r) = 0 with p(r) ≤ q(r) = 1/(1 − r2)2. A positive solution
of v′′ + qv = 0 is given by v(r) =

√
1− r2, which in (6) gives rise to the function F (r) = L(r) =

1
2 log 1+r

1−r . To finish the proof, simply observe that w(s) is precisely the function hf (r(s)ζ), where

r(s) = (e2s − 1)/(e2s + 1).

We derive from this the following theorem that completes the description of part (i) of Propo-
sition 5.3 in [HH].

Theorem 1: Let f ∈ NH satisfy f ′′(0) = 0. If the image Ω = f(D) is unbounded then f is of the
form

f(z) = aL(eiθz) + b .

Proof: The normalization f ′′(0) = 0 produces a critical point of the function hf at z = 0. Because
of the hyperbolic convexity along every ray from the origin, it follows that hf (0) is an absolute
minimum of hf . Simple considerations show that either

(a) there exist s0, α > 0 such that for all ζ, s ≥ s0

d

ds
hf (r(s)ζ) > α ,

or

(b) hf is constant along some ray [0, ζ0).

As it was done in [HH], the case (a) leads to bounds on |f ′(z)| that are integrable and which
give the logarithmic modulus of continuity (see also [GP]). On the other hand, suppose (b) holds.
After a rotation, we may assume that hf is constant along the ray [0, 1). This constant value is the
minimum, hence the gradient of hf vanishes there. In other words, for all r ∈ [0, 1)

∂hf
∂z

(r) = 0 ,

from which
f ′′

f ′
(r) =

2r

1− r2
.

From this, simple integration and analytic continuation show that f = aL+ b, as claimed.

Remark 1: Let f ∈ NH be univalent with f ′′(0) = 0, and let λ(w)|dw| be the Poincaré metric
of the image domain Ω = f(D). The argument in the proof of Theorem 1 shows that the critical
point of λ(w) at w0 = f(0) is unique unless f is of the form aL+ b.

The next two theorems will be also consequences of the comparison principle in Lemma 1. We
will consider the classes NH or NHt and specific normalizations, to which end we introduce the
functions

At(z) =
1√

1− t
(1 + z)

√
1−t − (1− z)

√
1−t

(1 + z)
√
1−t + (1− z)

√
1−t

,
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which satisfy At(0) = 0, A′t(0) = 1, A′′t (0) = 0. They have SAt(z) = 2t/(1 − z2)2, and exhibit
certain extremal behavior in the classes NHt.

Theorem 2: Let f ∈ NH with f(0) = 0, |f ′(0)| = 1 and f ′′(0) = 0. Then

(i) |f(rζ)| ≤ L(r) ,

(ii) |f ′(rζ)| ≤ L′(r) ,

(iii) Re

{
ζ
f ′′

f ′
(rζ)

}
≤ L′′

L′
(r) .

If equality holds in any of these inequalities at some r0ζ0 6= 0 then f is of the form f(z) =
cL(eiθz), |c| = 1.

Theorem 3: Let f ∈ NHt with f(0) = 0, |f ′(0)| = 1 and f ′′(0) = 0. Then

(i) |f(rζ)| ≤ At(r) ,

(ii) |f ′(rζ)| ≤ A′t(r) ,

(iii) Re

{
ζ
f ′′

f ′
(rζ)

}
≤ A′′t
A′t

(r) .

If equality holds in any of these inequalities at some r0ζ0 6= 0 then f is of the form f(z) =
cAt(e

iθz), |c| = 1.

The proof of both theorems is essentially the same, and we will prove only Theorem 3.

Proof: Since SAt(z) = 2t/(1 − z2)2 it follows that v(r) = (A′t(r))
−1/2 is a (positive) solution of

v′′ + qv = 0, where q(r) = t/(1 − r2)2. Observe also that because of the normalizations of At,
v(0) = 1 and v′(r) = 0. Let f ∈ NHt be normalized as in the theorem. It follows from (5) that
for each ζ, the function u(r) = |f ′(rζ)|−1/2 satisfies an equation of the form u′′ + pu = 0 with
p(r) ≤ q(r). Also, u(0) = 1 and u′(0) = 0. We apply now Lemma 1 to conclude that, for each ζ,

w(s) =

√
A′t(r(s))

|f ′(r(s)ζ)|

is a convex function of s, where ds/dr = (A′t(r))
−2. Since w(0) = 1 and w′(0) = 0, we conclude as

in the proof of Theorem 1, that the function w attains its minimum at 0. Hence w(s) ≥ 1, which
gives (ii). Direct integration gives now (i). To obtain (iii), simply observe that w′(s) ≥ 0, thus

(7) 0 ≤ 2
w′

w
(s) =

[
A′′t
A′t

(r)− Re

{
ζ
f ′′

f ′
(rζ)

}]
dr

ds
.

Finally, we discuss the cases of equality at some r0ζ0 6= 0. It is clear that such a case of equality
in (i) must come from equality in (ii) for all rζ0, r ≤ r0, and similarly, that equality in (ii) at some
r0ζ0 implies equality in (iii) along the segment [0, r0ζ0]. Therefore it suffices to consider just the
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case of equality in (iii). After replacing f(z) with f(ζ0z), we may assume that ζ0 = 1. We see
from (7) that w′(s0) = 0, and because w(s) is convex and w′(0) = 0, we have that w′(s) = 0 for all
0 ≤ s ≤ s0. But then w(s) = 1 for all such s, and we conclude that the function

Hf (z) =

√
A′t(|z|)
|f ′(z)|

attains its minimum value in the disk on the segment [0, r0]. Hence for 0 ≤ r ≤ r0

∂Hf

∂z
(r) = 0 ,

which gives
f ′′

f ′
(r) =

A′′t
A′t

(r) .

From here, analytic continuation, direct integration and the use of the normalization at the origin,
give that f = cAt for some |c| = 1.

Remark 2: We mention that

A′t(r) = O

(
1

(1− r2)1−
√
1−t

)
,

and that

(8)
A′′t
A′t

(r) =
2(r −

√
1− tAt(r))

1− r2
≤ 2tr

1− r2
.

3. JOHN DISKS

In this section we will study the concept of a John disk in connection with the condition

(9) sup
ζ

[lim sup
r→1

(1− r2)2σf (r, ζ)] < 2 .

Recall that a bounded, simply connected domain Ω is said to be John if there exists a constant M
such that for every cross-cut C of Ω

diamH ≤M diamC

holds for one of the components of Ω\C (see, e.g. [P]). Geometrically, this condition prevents ∂Ω
from having outward pointing cusps. See also Theorem 5.2 in [P] for a characterization of John
domains in terms of the growth of the derivative of the conformal mapping onto Ω.

In [HH], the authors show that the image Ω = f(D) of a univalent mapping f is a John disk
provided that

(10) lim sup
|z|→1

(1− |z|2)Re

{
z
f ′′

f ′
(z)

}
< 2 ,

extending a similar characterization of John domains within the Nehari class ([COP]). In particular,
the authors derive from (10) bounds on |f ′| that are integrable, establishing in this way that the
image Ω is bounded.
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To begin with, we need following comparison lemma.

Lemma 3: Let u, v be positive solutions of u′′+ pu = 0 and v′′+ qv = 0, respectively, and suppose
that p(r) ≤ q(r) for r0 ≤ r < 1. If

(11) lim
r→1

(1− r)u−2(r) = 0

then

(12) lim sup
r→1

[
−(1− r)u

′

u
(r)

]
≤ lim sup

r→1

[
−(1− r)v

′

v
(r)

]
.

Remark 3: The conclusion of the lemma is not true without the condition (11). For example, let
u(r) = 1− r, for which p(r) = 0, and let v(r) =

√
1− r2, for which q(r) = 1/(1− r2)2. Then

lim
r→1

[
−(1− r)v

v
(r)
]

=
1

2
< 1 = lim

r→1

[
−(1− r)u

u
(r)
]
.

Proof: The most general solution of the equation w′′ + pw = 0 is given by w = (ah + b)u, where
a, b are constants and h(r) =

∫ r
0 u
−2(x)dx. Thus

w′

w
=
u′

u
+

ah′

ah+ b
.

We claim that for appropriate choices of a, b

w′

w
(r0) ≥

v′

v
(r0) .

Indeed, this is equivalent to
ah′(r0)

ah(r0) + b
=
v′

v
(r0)−

u′

u
(r0) ,

which can be accomplished by choosing, for example, a = 1 and b such that h(r0) + b is positive
but sufficiently small. Note that this will guarantee also that h(r) + b remains positive for r ≥ r0
because this function is increasing. For the constants a, b chosen in this way, the Sturm comparison
theorem implies that (w′/w)(r) ≥ (v′/v)(r) for r ∈ [r0, 1), hence

(13) −u
′

u
(r)− h′(r)

h(r) + b
≤ −v

′

v
(r) .

The lemma now follows from the fact that limr→1(1− r)h′(r) = limr→1(1− r)u−2(r) = 0.

In the applications we will take u(r) = |f ′(rζ)|−1/2, so that for bounded univalent f , (11) will
be a consequence of the classical estimates for the hyperbolic metric. For univalent functions either
in NH or satisfying (9), the assumption that f be bounded can be relaxed, as the next theorems
show.

Theorem 4: Let f ∈ NH be univalent. If Ω = f(D) has finite area then f is bounded and admits
a continuous extension to D with a logarithmic modulus of continuity. Furthermore, for all |ζ| = 1,

(14)

∫ 1

0
|f ′(rζ)|dr <∞ .
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Theorem 5: Let f : D → C be univalent and satisfy (9). If Ω = f(D) has finite area then f is
bounded and admits a

√
1− t-Hölder continuous extension to D. Furthermore, for all |ζ| = 1,

(15)

∫ 1

0
|f ′(rζ)|dr <∞ .

Again, the proof of both theorems is essentially the same, and we prove only Theorem 5.

Proof: If f satisfies (9) then there exists a fixed t < 1 so that for each ζ there exists an r0 =
r0(ζ) < 1 such that for r ≥ r0(ζ)

(16) σf (r, ζ) <
t

(1− r2)2
.

It is easy to see that r0(ζ) can be chosen so that r0(ζ) remains locally uniformly bounded away
from 1. By compactness, we can find r0 < 1 such that (16) holds for all r ≥ r0 and all ζ. Therefore,
the function

hf (rζ) =
1√

(1− r2)|f ′(rζ)|
is convex with respect to the hyperbolic parametrization s = L(r) of every radial segment [r0ζ, ζ).
We claim that hf cannot be decreasing along an entire radial segment. If so, then hf (rζ0) ≤ c,
hence

(17) |f ′(rζ0)| ≥
c−2

1− r2
.

After a rotation, we may assume that ζ0 = 1, and let us consider the region R = {z ∈ D :
dh(z, [r0, 1)) ≤ ε}. We claim that f(R) has infinite area, which will give a contradiction. To show
this, observe that the hyperbolic distance between the points r and r + iy is given by L(q) =
1
2 log 1+|q|

1−|q| , where q = |y|/((1− r2)2 + r2y2)1/2. Let ε = L(δ). It follows that, for r ≥ r0, the point

r + iy will belong to R provided |y| ≤ y(r), where

δ =
y(r)√

(1− r2)2 + r2y2(r)
≤ y(r)

1− r2
,

hence y(r) ≥ δ(1−r2). Since for univalent mappings |f ′(w)|/|f ′(z)| ≤ e6dh(z,w), it follows now from
(17) that ∫ ∫

R
|f ′|2dA =∞ .

We conclude from this that for each ζ there exists r1(ζ) such that (dhf/ds)(r1ζ) > 0. Because
of continuity, r1(ζ) can be chosen locally uniformly bounded away from 1, so that by compactness,
there exists r1 independent of ζ such that

(18) (dhf/ds)(r1ζ) ≥ α > 0 ,

for all ζ. The bound on σf implies a strong degree of convexity. Indeed, in applying Lemma 1
to u(r) = |f ′(rζ)|−1/2 and v(r) =

√
1− r2, and corresponding functions p(r) = σf (r, ζ), q(r) =

1/(1− r2)2, we have that the function w(s) = (u/v)(r(s)) = hf (r(s)ζ) satisfies

(19) w′′ = (q − p)uv3 = (q − p)v4w ≥ (1− t)w .
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In light of (18), it follows that for s ≥ s1 = L(r1),

hf (r(s)ζ) ≥ aes
√
1−t ,

where the constant a is positive and only depends on α, s1 and minζ hf (r1ζ). This gives that for
|z| ≥ r1

1

(1− |z|2)|f ′(z)|
≥ a2

(
1 + |z|
1− |z|

)√1−t
,

which implies

(20) |f ′(z)| ≤ a−2

(1 + |z|)
√
1−t

1

(1− |z|)1−
√
1−t
≤ a−2

2(1− |z|)1−
√
1−t

.

From this, the well known argument based on integrating |f ′| along hyperbolic segments, shows that
f admits a Hölder continuous extension to D with exponent

√
1− t (see, e.g., [GP]). In addition,

it follows immediately from (20) that (15) will hold for all ζ. This finishes the proof of Theorem 6.

With this, we can now establish the following result.

Theorem 6: Let f : D→ C be univalent and satisfy (9). If Ω = f(D) has finite area then

(21) lim sup
|z|→1

(1− |z|2)Re

{
z
f ′′

f ′
(z)

}
< 2 ,

and Ω is a bounded John disk.

Proof: We already know from Theorem 6 that Ω is bounded. Therefore, for all ζ, limr→1(1 −
r2)|f ′(rζ)| = 0. As we showed in Theorem 6, there exist r0 such that for r ≥ r0,

σf (r, ζ) ≤ t

(1− r2)2
.

We apply now Lemma 2 with u(r) = |f ′(rζ)|−1/2, v(r) = (A′t(r))
−1/2, and functions p(r) = σf (r, ζ),

q(r) = t/(1− r2)2, to conclude that

(22) lim sup
r→1

(1− r2)Re

{
ζ
f ′′

f ′
(rζ)

}
≤ lim sup

r→1
(1− r2)A

′′
t

A′t
(r) ≤ 2t .

In order to prove the theorem, we need to show that the bound (13) in Lemma 3 leading to (22)
can be made uniform in ζ. The constant b in (13) must be chosen so that for all ζ

|f ′(r0ζ)|∫ r0
0 |f ′(xζ)|dx+ b

≥ − A′′t
2A′t

(r0) + Re

{
f ′′

2f ′
(r0ζ)

}
,

which can be accomplished because the right hand side is bounded in ζ and because both |f ′(r0ζ)|
and

∫ r0
0 |f

′(xζ)|dx are positive and bounded in ζ. In other words, for a fixed b, we see from (13)
that for all r ≥ r0 and all ζ,

Re

{
ζ
f ′′

f ′
(rζ)

}
≤ A′′t

A′t
(r) +

|f ′(rζ)|∫ r
0 |f ′(xζ)|dx+ b

≤ 2t

1− r2
+

|f ′(rζ)|∫ r
0 |f ′(xζ)|dx+ b

.
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The inequality (21) is now a consequence of (20). The fact that Ω is a John disk follows now from
Theorem 3.7 in [HH].

4. AN EXAMPLE

We show by means of an example that function in NH are, in general, not univalent. Let

f(z) = ecz .

Then f ′′/f ′ = c and Sf = −c2/2, so that

σf (rζ) = −1

2
Re{c2ζ2} − 1

2
[Im{cζ}]2 = −1

2
Re{c2ζ2}+

1

2
Re{c2ζ2} − 1

2
[Re{cζ}]2 ≤ 0 .

Hence f ∈ NH for all values of c, but it will fail to be univalent in D if |c| > π. In fact,
f(−π

c ) = f(πc ), thus the radius of univalence tends to 0 as |c| → ∞.
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